)

A

C
0

@HV’HI’INVSHV
o |
&
¢ TECHNOLOGY‘ 4

$

&
&
2

Ahsanullah University of Science and Technology (AUST)
Department of Computer Science and Engineering

LABORATORY MANUAL

Course No.: CSE 1278
Course Title: Computer Programming and Algorithms Sessional

For the students of 1st Year, 2nd semester of
B.Sc. in Industrial and Production Engineering program

TABLE OF CONTENTS

COURSE LEARNING OUTCOMEScuuiiiirenrnesnnssensnessnssssssssssnsssessassssssasssssssassssssacs
PREFERRED TOOLS ...ucoouiniiniinninntensnnnssnesssnssssssssnssssssssssssssssssssssssssssssssssasssssssssssssns
TEXT/REFERENCE BOOKS
ADMINISTRATIVE POLICY OF THE LABORATORYccontinnuiiseccsnecsnecsannsancens
LIST OF SESSIONS

SESSION 1 1.ttt st e
The major components and the general form of Python programs.
SESSION 2.ttt ettt ettt ettt et et st sb ettt et et b e sae e 13
Conditional Statements.
SESSION 3.ttt ettt et et sb et be et s b e e ae e 23
Python Loops and for loop.
SESSION ...ttt ettt ettt ettt et e s e ettt et e s e et esat e e b saneebeeseneeseesaneenneeeane 23
Loop continued (while loop).
SESSION 5.ttt ettt ettt sttt et et e et st e e san e e be e seneenbeesaneenneeeane 23
Loop continued (nested loop).
SESSION Dottt ettt sttt ettt sttt et et st sae e et s 29
Python Functions.
SESSION 7.ttt ettt ettt sttt ettt bttt ettt et et st sae bbb s 33
Recursion and Recursive Function.
SESSION 8 ...ttt ettt ettt et e s e ettt et sttt s et e b st e ebe e seneebeesaneenaeeeane 35
Python Collections.
SESSION 9.ttt ettt ettt ettt et st et e e e b ear e e e e 38
Python Arrays and 1-D Array.
SESSION 10ttt sesesesesessseses e s e s e s se s tase st se e st s ses s sessssesesesesenes 38
Array continued (2-D and 3-D Array).
SESSION 11ttt ettt et e e e 46
Python Strings.
SESSION 121ttt ettt ettt ettt e st sa e bbb s 52
Searching Algorithms.
SESSION 131ttt ettt et et s sa et bbb s 55
Sorting Algorithms.

FINAL EXAMINATION 56

COURSE LEARNING OUTCOMES

After the successful completion of this course, students will be able to:

1. Explain the basic concepts of programming
2. Apply the program solving skills and algorithms to solve a wide range of common
programming problems

3. Analyze and synthesize different problem-solving methodologies
PREFERRED TOOL(S)

1. Python IDLE

2. VS Code

3. Google Colab
TEXT/REFERENCE BOOK(S)

1. Luciano Ramalho, Fluent Python

2. Charles Severance, Python for Everybody: Exploring Data in Python 3

ADMINISTRATIVE POLICY OF THE LABORATORY

I.

Students must perform class assessment tasks individually

2. Viva will be taken for each assignment and marks on assignment will substantially depend

on viva

. Plagiarism is strictly forbidden and will be dealt with punishment

Python Programming Language

It was created by Guido van Rossum, and released in 1991. Python works on
different platforms (Windows, Mac, Linux, Raspberry Pi, etc). It has a simple syntax
similar to the English language that allows developers to write programs with fewer
lines than some other programming languages. Python can be used to handle big
data and perform complex mathematics. The most recent major version of Python is
Python 3. Python uses new lines to complete a command, as opposed to other
programming languages which often use semicolons or parentheses. It relies on
indentation, using whitespace, to define scope; such as the scope of loops, functions
and classes. Other programming languages often use curly-brackets for this purpose.

First Python Program

Code
print("Hello, world!")

Output
Hello, world!

Python Indentation

Indentation refers to the spaces at the beginning of a code line. Where in other
programming languages the indentation in code i1s for readability only, the
indentation in Python is very important. Python uses indentation to indicate a block
of code. It will give you an error if you skip the indentation.

For Example,

Correct

Error

if 5>2:
print("Five is greater than two!")

if 5> 2:
print("Five is greater than two!")

The number of spaces is up to you as a programmer, the most common use is four,
but it has to be at least one. You have to use the same number of spaces in the same

block of code, otherwise Python will give you an error.

Correct

Error

if 5> 2:
print("Five is greater than two!")
if 5> 2:
print("Five is greater than two!")

if 5> 2:
print("Five is greater than two!")
print("Five is greater than two!")

Python Multi-Line Statements

Statements in Python typically end with a new line. Python does, however, allow the
use of the line continuation character (\) to denote that the line should continue. For
Example,

total = item_one +\
item_two + \
item_three

Statements contained within the [], {}, or () brackets do not need to use the line
continuation character.

days = ['Monday', 'Tuesday', 'Wednesday',
"Thursday', 'Friday']

Quotations in Python

nmnn

Python accepts single ('), double (") and triple (" or """) quotes to denote string
literals, as long as the same type of quote starts and ends the string. The triple quotes
are used to span the string across multiple lines. For example,

word = 'word'
print (word)

sentence = "This is a sentence."
print (sentence)

paragraph = """This is a paragraph. It is
made up of multiple lines and sentences.
print (paragraph)

nmn

Comments in Python

A comment is a programmer-readable explanation or annotation in the Python source
code. They are added with the purpose of making the source code easier for humans
to understand, and are ignored by Python interpreter. Just like most modern
languages, Python supports single-line (or end-of-line) and multi-line (block)
comments.

A hash sign (#) that is not inside a string literal begins a comment. All characters
after the # and up to the end of the physical line are part of the comment and the
Python interpreter ignores them.

Code Output
First comment Hello, world!
print ("Hello, World!") # Second comment

Python does not really have a syntax for multiline comments. To add a multiline
comment, you can insert a # for each line.

#This is a comment
#written in

#more than just one line
print("Hello, World!")

Not quite as intended, you can use a multiline string. Since Python will ignore string
literals that are not assigned to a variable, you can add a multiline string (triple
quotes) in your code, and place your comment inside it.

nmn

This is a comment
written in
more than just one line

mnmn

print("Hello, World!")

Multiple Statements on a Single Line

The semicolon (;) allows multiple statements on the single line given that neither
statement starts a new code block.

\ import sys; X = 'foo'; sys.stdout.write(x + "\n') \

Multiple Statement Groups as Suites

A group of individual statements, which make a single code block are called suites
in Python. Compound or complex statements, such as if, while, def, and class require
a header line and a suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:)
and are followed by one or more lines which make up the suite.

if expression :
suite

elif expression :
suite

else :
suite

Python Keywords

Keywords are predefined, reserved words used in Python programming that have
special meanings to the compiler. We cannot use a keyword as a variable name,
function name, or any other identifier. They are used to define the syntax and
structure of the Python language.

All the keywords except True, False and None are in lowercase and they must be
written as they are.

Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or
other object. An identifier starts with a letter A to Z or a to z or an underscore ()
followed by zero or more letters, underscores and digits (0 to 9). Python does not
allow punctuation characters such as @, $, and % within identifiers.

Python is a case sensitive programming language. Thus, Manpower and manpower
are two different identifiers in Python.

Rules for Naming an Identifier

e Identifiers cannot be a keyword.

o Identifiers are case-sensitive.

e It can have a sequence of letters and digits. However, it must begin with a
letter or . The first letter of an identifier cannot be a digit.

e [t's a convention to start an identifier with a letter rather .

e Whitespaces are not allowed.

e We cannot use special symbols like !, @, #, $, and so on.

Valid Identifiers Invalid Identifiers
score @core
return_value return
highest score highest score
namel Iname
convert to string convert to string
Python Variables

In programming, a variable is a container (storage area) to hold data. Python
variables are the reserved memory locations used to store values within a Python
Program. This means that when you create a variable you reserve some space in the
memory.

Creating Python Variables

Python variables do not need explicit declaration to reserve memory space or you
can say to create a variable. A Python variable is created automatically when you
assign a value to it.

The equal sign (=) is used to assign values to variables. The operand to the left of
the = operator is the name of the variable and the operand to the right of the =
operator is the value stored in the variable.

counter = 100 # Creates an integer variable
miles = 1000.0 # Creates a floating point variable
name ="AUST CSE" # Creates a string variable

Python is a type-inferred language, so you don't have to explicitly define the variable
type. It automatically knows that AUST CSE is a string and declares the name
variable as a string.

Assigning multiple values to multiple variables

a,b,c=25, 3.2, 'Hello'

print(a) # prints 5
print(b) # prints 3.2
print(c) # prints Hello

If we want to assign the same value to multiple variables at once, we can do this as:

namel = name2 ='AUST CSE'

print(namel) # prints AUST CSE
print(name2) # prints AUST CSE

Variables do not need to be declared with any particular type, and can even change
type after they have been set.

x=4 #xisof typeint
x ="AUST" # x is now of type str
print(x)

If you want to specify the data type of a variable, this can be done with casting.
x =str(3) #x will be '3

y=int(3) #y willbe3
z = float(3) # z will be 3.0

If you have a collection of values in a list, tuple etc. Python allows you to extract the
values into variables. This is called unpacking.

"nn

fruits = ["apple", "banana", "cherry"]
X, y, z = fruits

print(x)

print(y)

print(z)

Output Variables

The Python print() function is often used to output variables.

x = "Python is awesome"
print(x)

In the print() function, you can output multiple variables, separated by a comma.

x = "Python"
—n:_n

y="is

z = "awesome"

print(x, Y Z)

Local Variables

Python Local Variables are defined inside a function. We cannot access variable
outside the function.

def sum(x,y):
sum =Xty
return sum

print(sum(5, 10))

Global Variables

Variables that are created outside of a function are known as global variables. Global
variables can be used by everyone, both inside of functions and outside.

x = "awesome"

def myfunc():
print("Python is " + x)

myfunc()

If you create a variable with the same name inside a function, this variable will be
local, and can only be used inside the function. The global variable with the same
name will remain as it was, global and with the original value.

x = "awesome"

def myfunc():
x = "fantastic"
print("Python is " + x)

myfunc()

print("Python is " + x)

The global Keyword

Normally, when you create a variable inside a function, that variable is local, and
can only be used inside that function. To create a global variable inside a function,
you can use the global keyword.

def myfunc():
global x
x = "fantastic"

myfunc()

print("Python is " + x)

Use the global keyword if you want to change a global variable inside a function.

x = "awesome"

def myfunc():
global x
x = "fantastic"

myfunc()

print("Python is " + x)

Deleting Python Variables

You can delete the reference to a number object by using the del statement.

del var
del var a, var b

If we try to use a deleted variable then Python interpreter will throw an error.

counter = 100
print (counter)

del counter
print (counter)

Data Types in Python

Variables can store data of different types, and different types can do different things.
Data types specify the type of data that can be stored inside a variable. Python has
the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex
Sequence Types: list, tuple, range
Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

None Type: NoneType

10

You can get the data type of any object by using the type() function:

Xx=5
print(type(x))

In Python, the data type is set when you assign a value to a variable:

x = "Hello World" str

x =20 int

x =20.5 float
x=1j complex
x = ["apple", "banana", "cherry"] list

x = ("apple", "banana", "cherry") tuple

x = range(6) range

x = {"name" : "John", "age" : 36} dict

x = {"apple", "banana", "cherry"} set

x = frozenset({"apple", "banana", "cherry"}) frozenset
x =True bool

x = b"Hello" bytes

x = bytearray(5) bytearray
x = memoryview(bytes(5)) memoryview
x = None NoneType

If you want to specify the data type, you can use the following constructor functions:

x = str("Hello World")
X = int(20)
x = float(20.5)

11

x = complex(1j)

x = list(("apple", "banana", "cherry"))
x = tuple(("apple", "banana", "cherry"))
x = range(6)

x = dict(name="John", age=36)

nan

x = set(("apple", "banana", "cherry"))

x = frozenset(("apple", "banana", "cherry"))
x = bool(5)

x = bytes(5)

X = bytearray(5)

x = memoryview(bytes(5))

Python Data Type Conversion

To convert data between different Python data types, you simply use the type name
as a function.

a=int(1) #awillbe

b=int(2.2) #b will be 2
c=1nt("3.3") #cwillbe3

a=float(1) #awillbel.0
b =float(2.2) #b will be 2.2
c = float("3.3") # ¢ will be 3.3

a=str(l) #awillbe"1"
b =str(2.2) #b will be "2.2"
c =str("3.3") # c will be "3.3"

In certain situations, Python automatically converts one data type to another. This is
known as implicit type conversion.

integer number = 123
float number = 1.23

new_number = integer number + float number

print("Value:",new_number)
print("Data Type:",type(new number))

12

Python User Input
In Python, we can use the input() function to take the input from the user.
Syntax: input(prompt)

Here, prompt is the string we wish to display on the screen. It is optional.

num = input('Enter a number: ') Enter a number: 10
print("You Entered:', num) You Entered: 10
print('Data type of num:', type(num)) Data type of num: <class 'str'’>

Python always read the user input as a string. It is important to note that the entered
value 10 is a string, not a number. So, type(num) returns <class 'str'>.

To convert user input into a number we can use int() or float() functions as:

| num = int(input('Enter a number: "))

Example Codes

1. Add Two Numbers With User Input

numl = input('"Enter first number: ")
num?2 = input('"Enter second number: ')

sum = float(numl) + float(hum?2)

print('The sum of {0} and {1} is {2}'.format(numl, num2, sum))

2. Calculate the Area of a Triangle

a = float(input('Enter first side: "))

b = float(input('Enter second side: "))
¢ = float(input('Enter third side: "))
s=(a+b+c)/2

area = (s*(s-a)*(s-b)*(s-c)) ** 0.5

print('The area of the triangle {0:.3f} and s={1:.3f}' .format(area,s))

13

Python Operators

Operators are special symbols that perform operations on variables and values.
These operations can be arithmetic, logical, comparison, assignment, membership,
or identity operations. Understanding operators is crucial for manipulating data
effectively and writing concise code.

Types of Python Operators

e Arithmetic Operators
e Comparison Operators
e Assignment Operators
e Logical Operators

e Membership Operators
e Identity Operators

e Bitwise Operators

Python Arithmetic Operators

Arithmetic operators are used to perform mathematical operations like addition,
subtraction, multiplication, etc.

For Example,

Assume, variable a holds 10 and variable b holds 20.

Operator Name Example
+ Addition a+b=30
- Subtraction a—b=-10
* Multiplication a*b=200
/ Division b/a=2
% Modulus b%a=0
ok Exponent a**b =10**20
// Floor Division 9//2=4

14

21
b=10
c=0
c=a+b

print ("a: {} b: {} atb: {}".format(a,b,c))

c=a-b
print ("a: {} b: {} a-b: {}".format(a,b,c))

c=a*b
print ("a: {} b: {} a*b: {}".format(a,b,c))

c=al/b

print ("a: {} b: {} a/b: {}".format(a,b,c))
c=a%b

print ("a: {} b: {} a%b: {}".format(a,b,c))
a=2

b=3

c=a**b

print ("a: {} b: {} a**b: {}".format(a,b,c))

a=10
b=5
c=al//b

print ("a: {} b: {} a//b: {}".format(a,b,c))

Python Comparison Operators

Comparison operators compare the values on either side of them and decide the
relation among them. They are also called Relational operators.

Assume, variable a holds 10 and variable b holds 20.

Operator Name Example
== Equal (a==D) is not true
1= Not equal (a!=Db)is true
> Greater than (a>Db) is not true

15

< Less than (a<b)is true
>= Greater than or equal to (a >=b) is not true
<= Less than or equal to (a <=Db) is true
a=21
b=10
if(a==b):
print ("Line 1 - a is equal to b")

else:
print ("Line 1 - a is not equal to b")

if(al!=b):
print ("Line 2 - a is not equal to b")
else:

print ("Line 2 - a is equal to b")

if(a<b):

print ("Line 3 - a is less than b")
else:

print ("Line 3 - a is not less than b")

if(a>b):

print ("Line 4 - a is greater than b")
else:

print ("Line 4 - a is not greater than b")

a,b=b,a #values of a and b swapped. a becomes 10, b becomes 21

if(a<=b):
print ("Line 5 - a is either less than or equal to b")
else:

print ("Line 5 - a is neither less than nor equal to b")

if(b>=a):

print ("Line 6 - b is either greater than or equal to b")
else:

print ("Line 6 - b is neither greater than nor equal to b")

Python Assignment Operators

Assignment operators are used to assign values to variables. For Example,

16

Operator Example Equivalence
= a=10 a=10
+= a—+=30 a=a+ 30
-= a-=15 a=a-15
= a=10 a=a*10
/= a/=>5 a=a/S5
%= a%=>5 a=a%>5
kk— a**:4 a:a**4
/= al/l=5 a=al/l5
&= a&=>5 a=a&b
= al=5 a=al5
A= a”=>5 a=a"5

>>= a>>=> a=a>>>5
<<= a<<=5 a=a<<5

= print(x :=3) x=73
print(x)

Python Logical Operators

Python logical operators are used to combine two or more conditions and check the

final result.

Assume, variable a holds 10 and variable b holds 20.

Operator Name Example
and AND a>5 and b<25
or OR a>5 or b<25
not NOT not(a>5 or b<25)
var=>5

print(var > 3 and var < 10)
print(var > 3 or var <4)
print(not (var > 3 and var <

10))

Python Membership Operators

17

Python's membership operators test for membership in a sequence, such as strings,

lists, or tuples.

false otherwise

variable in the specified sequence and

Operator Description Example
in returns True if it finds a variable in the ainb
specified sequence, false otherwise
not in returns True if it does not find a anotinb

a=10
b=20
list=1[1, 2, 3,4, 5]

print ("a:", a, "b:", b, "list:", list)

if (ain list):

print ("a is present in the given list")
else:

print ("a is not present in the given list")

if (b not in list):

print ("b is not present in the given list")
else:

print ("b is present in the given list")

c=b/a
print ("c:", c, "list:", list)
if (cin list):
print ("c is available in the given list")
else:
print ("c 1s not available in the given list")

18

Python Identity Operators

Identity operators compare the memory locations of two objects.

Operator Description Example
is returns True if both variables are the aisb
same object and false otherwise
is not returns True if both variables are not aisnotb
the same object and false otherwise

-
-

o o ®
Il
QO

print(a is c)
print(a is b)

print(a is not c)
print(a is not b)

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. These operators
are used to compare binary numbers.

Operator Name Example
& AND a&b
| OR alb
A XOR a™b
~ NOT ~a
<< Zero fill left shift a<<3
>> Signed right shift a>>3

a=20

b=10

print (‘a=",a,":",bin(a),'b=",b,"',bin(b))
c=0

c=a&b;

print ("result of AND is ", ¢,":",bin(c))

c=a]lb;
print ("result of OR 1s ", c,":',bin(c))

c=a’b;
print ("result of EXOR is ", ¢,":',bin(c))

print ("result of COMPLEMENT is ", c,".",bin(c))

c=a<<2;
print ("result of LEFT SHIFT is ", c,":',bin(c))

c=a>>2;
print ("result of RIGHT SHIFT is ", ¢,":',bin(c))

Python if Statement

An if statement executes a block of code only if the specified condition is met.

if condition:
body of if statement

Here, if the condition of the if statement 1is:

e True - the body of the if statement executes.
e False - the body of the if statement is skipped from execution.

20

Condition is True Condition is False

number = 10 number = -5
——1f number > 0:

—pi code

—1f number > 0:

code

code after 1if —P» # code after if

number = 10

check if number is greater than 0
if number > 0:
print("Number is positive')

print('This statement always executes')

Python if...else Statement

An if statement can have an optional else clause. The else statement executes if the
condition in the if statement evaluates to False.

if condition:
body of if statement

else:
body of else statement

Here, if the condition inside the if statement evaluates to

e True - the body of if executes, and the body of else is skipped.
o False - the body of else executes, and the body of if is skipped.

Condition is True

number = 10

—— 1T number > 0:
—pi code

else:
code

code after if

Condition is False

number = -5

~——1f number > 0:

code

—Peolse:

code

code after

L f

21

number = 10

if number > 0:
print('Positive number')

else:
print('"Negative number")

print('This statement always executes')

Python if...elif...else Statement

The if...else statement is used to execute a block of code among two alternatives.
However, if we need to make a choice between more than two alternatives, we use

the if...elif...else statement.

if conditionl:

code block 1
elif condition2:

code block 2
else:

code block 3

number = 0

if number > 0:
print("Positive number")

elif number <O0:
print('Negative number')

else:
print('Zero")

print("This statement is always executed')

Python Nested if Statements

It is possible to include an if statement inside another if statement. For example,

number = 5

outer if statement
if number >= 0:
inner 1f statement
if number == 0:
print('Number is 0')

inner else statement
else:
print('Number is positive')

outer else statement
else:
print('Number is negative')

23

Python Loops

In general, statements are executed sequentially: The first statement in a function is
executed first, followed by the second, and so on. There may be a situation when
you need to execute a block of code several number of times. Python loops allow us
to execute a statement or group of statements multiple times.

Conditional Code

If condition
is true

If condition
is false

Types of Loops in Python

e while loop
e for loop
e nested loops

The while Loop

With the while loop we can execute a set of statements as long as a condition is true.
The while loop requires relevant variables to be ready.

1=1
while 1 < 6:

print(i)
i+=1

24

The else Statement

With the else statement we can run a block of code once when the condition no
longer is true.

i=1
while 1 < 6:
print(1)
it=1
else:
print("1 is no longer less than 6")

Python For Loops

A for loop is used for iterating over a sequence (that is either a list, a tuple, a
dictionary, a set, or a string). With the for loop we can execute a set of statements,
once for each item in a list, tuple, set etc. The for loop does not require an indexing
variable to set beforehand.

"nn

fruits = ["apple", "banana", "cherry"]
for x in fruits:
print(x)

Looping Through a String

for x in "banana":
print(x)

The break Statement

With the break statement we can stop the loop before it has looped through all the
items.

nn

fruits = ["apple", "banana", "cherry"]
for x in fruits:
if x == "banana":
break
print(x)

25

The continue Statement

With the continue statement we can stop the current iteration of the loop, and
continue with the next.

nn

fruits = ["apple", "banana", "cherry"]
for x in fruits:
if x == "banana":
continue
print(x)

The range() Function

To loop through a set of code a specified number of times, we can use the range()
function. The range() function returns a sequence of numbers, starting from 0 by
default, and increments by 1 (by default), and ends at a specified number.

for x in range(6):
print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible to specify
the starting value by adding a parameter: range(2, 6), which means values from 2 to
6 (but not including 6).

for x in range(2, 6):
print(x)

The range() function defaults to increment the sequence by 1, however it is possible
to specify the increment value by adding a third parameter: range(2, 30, 3).

for x in range(2, 30, 3):
print(x)

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed when the
loop is finished.

26

for x in range(6):
print(x)
else:
print("Finally finished!")

The else block will NOT be executed if the loop is stopped by a break statement.

for x in range(6):
if x ==3:
break
print(x)
else:
print("Finally finished!")

The pass Statement

Python pass statement is used when a statement is required syntactically but you do
not want any command or code to execute. It is a null operation; nothing happens
when it executes.

forxin [0, 1, 2]:
pass

Nested Loops

A nested loop is a loop inside a loop. The "inner loop" will be executed one time for
each iteration of the "outer loop".

outer loop
for 1 in range(2):
inner loop
for j in range(2):
print(f'i = {i}, j= {j}")

Infinite while Loop

If the condition of a while loop is always True, the loop runs for infinite times,
forming an infinite while loop.

27

age =32
while age > 18:
print("You can vote'")

for loop vs while loop

The for loop is usually used in the sequence when the number of iterations is known.

for 1 in range(4):
print(i)

The while loop 1s usually used when the number of iterations is unknown.

while True:
user_input = input("Enter password: ")
if user_input == 'exit":
print('Status: Entry Rejected')
break
print(‘Status: Entry Allowed")

Modifying 'range()' function to generate infinite for loop

from itertools import count

for 1 in count():
print("Value of 1: ", 1)

Sample Codes

% 1+2+3+...4+n

n = int(input("Enter value of n: "))
sum = 0
for 1 in range(1,n+1):
sum-+=i
print(sum)

% 3+11+19+...+n

28

n = int(input("Enter value of n: "))
sum =0
for 1 in range(3,n+1,8):
sum-+=i
print(sum)

¢ Guess the output!

for 1 in range(3):
for j in range(3):
if j==1:
break
print(i,j)

¢ Guess the output!

for 1 in range(3):
for j in range(3):
if j==1:
continue
print(i,j)

¢ Guess the output!

def fun(n):
for 1 in range(1, n + 1):
for j in range(n - 1):

pI'il’lt(" H’ end:HH)

for k in range(1, 2*1):

pI'il’lt("*", end:HH)

print("\n")
n=>5
fun(n)

29

Python Functions

A function is a block of code which only runs when it is called and performs a
specific task. You can pass data, known as parameters, into a function. A function
can return data as a result. A Python function is a block of organized, reusable code
that is used to perform a single, related action. Functions provide better modularity
for your application and a high degree of code reusing. Dividing a complex problem
into smaller chunks makes our program easy to understand and reuse. A Python
function may be invoked from any other function by passing required data (called
parameters or arguments). The called function returns its result back to the calling
environment.

Types of Python Functions
Python provides the following types of functions:

e Built-in functions
e Functions defined 1n built-in modules
e User-defined functions

Creating a Function

In Python a function is defined using the def keyword.

def my function():
print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis.

def my function():
print("Hello from a function")

my _function()

Arguments

Information can be passed into functions as arguments. Arguments are specified after
the function name, inside the parentheses. You can add as many arguments as you
want, just separate them with a comma.

30

def my function(fname):
print(fname + " Refsnes")

my_function("Emil")
my_function("Tobias")
my_function("Linus")

Function to Add Two Numbers

sum = num/l + num?2
print("Sum: ", sum)

add numbers(5, 4)

def add numbers(num1, num2):

The return Statement

We return a value from the function using the return statement.

def find_square(num):
result = num * num
return result

square = find square(3)

print('Square:', square)

Multiple Function Program

def cse():
print("CSE")
def eee():
print("EEE")
def ipe():
print("IPE")
print("Welcome to AUST")
ipe()
eee()
cse()

31

def cse():
print("CSE")
def eee():
print("EEE")
cse()
def ipe():
print("IPE")
eee()
print("Welcome to AUST")

ipe()

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those
defined outside have a global scope.

total = 0;

def sum(argl, arg?):
total = argl + arg2;
print ("Inside the function local total : ", total)
return total;

sum(10, 20);
print ("Outside the function global total : ", total)

Guess The Output!

x =10

def funcl1():
x =1100
print("x inside functionl: ",x)
func2(100)

def func2(x):
print("x inside function2: ",x)
func3()

def func3():
global x
print("x inside function3: ",x)
x=550

32

def func4(x):

print("x inside function4: ",x)

x=1500
return x

print("x outside function:

func1()

print("x outside function:

x=110

print("x outside function:

x = func4(750)

print("x outside function:

"X)

",X)

"X)

n

X)

33

Python Recursion

Recursion is the process of defining something in terms of itself. In Python, we know
that a function can call other functions. It is even possible for the function to call
itself. These types of construct are termed as recursive functions.

def recurse():
recursive
recurse() =
recurse()
def factorial(x):
ifx==1:
return 1
else:
return (x * factorial(x-1))
num = 3
print("The factorial of", num, "is", factorial(num))

Every recursive function must have a base condition that stops the recursion or else
the function calls itself infinitely.
Advantages of Recursion

e Recursive functions make the code look clean and elegant.

e A complex task can be broken down into simpler sub-problems using
recursion.

e Sequence generation is easier with recursion than using some nested iteration.

Disadvantages of Recursion
e Sometimes the logic behind recursion is hard to follow through.
e Recursive calls are expensive (inefficient) as they take up a lot of memory and
time.
e Recursive functions are hard to debug.

Find Sum of Natural Numbers Using Recursion

34

def recur sum(n):
ifn<=1:
return n
else:
return n + recur_sum(n-1)
num =35
if num <O0:
print("Enter a positive number")
else:
print("The sum is",recur sum(num))

Display Fibonacci Sequence Using Recursion

def getFibo(n, nl, n2):
n3=0
1fn>0:
n3 =nl +n2
print(n3)
nl =n2
n2 =n3
getFibo(n-1, nl, n2)
n=7
nl,n2=0,1
print(nl, n2)
getFibo(n-2,n1,n2)

Find total digits in an integer number using recursive function

count =0
def digitCount(n):
1fn//10 == 0:
global count
count = count + 1
return
else:
n=n//10
count = count + 1
digitCount(n)

number = 5231
digitCount(number)
print("No of digit: ",count)

35

Python Collections
There are four collection data types in the Python programming language.
e List: ordered and changeable. Allows duplicate members.
e Tuple: ordered and unchangeable. Allows duplicate members.
e Set: unordered, unchangeable and unindexed. No duplicate members.
e Dictionary: ordered and changeable. No duplicate members.

List

Lists are used to store multiple items in a single variable. List is one of the built-in
data types in Python used to store collections of data. Lists are created using square
brackets.

nan

list = ["apple", "banana", "cherry"]
print(list)

List items are ordered, changeable, and allow duplicate values. List items are
indexed, the first item has index [0], the second item has index [1] etc.

When we say that lists are ordered, it means that the items have a defined order, and
that order will not change. If you add new items to a list, the new items will be placed
at the end of the list.

The list is changeable, meaning that we can change, add, and remove items in a list
after it has been created.

Since lists are indexed, lists can have items with the same value.

nan "nn nn

list = ["apple", "banana", "cherry", "apple", "cherry"]
print(list)

To determine how many items a list has, use the len() function.

nan

list = ["apple", "banana", "cherry"]
print(len(list))

List items are indexed and you can access them by referring to the index number.

nmn

list = ["apple", "banana", "cherry"]
print(list[1])

Negative indexing means start from the end. -1 refers to the last item, -2 refers to the
second last item etc.
list = ["apple", "banana", "cherry"]
print(list[-1])

36

You can specify a range of indexes by specifying where to start and where to end the
range. When specifying a range, the return value will be a new list with the specified
items.

list = ["apple", "banana",
print(list[2:5])

nan "nn nn "nn

cherry", "orange", "kiwi", "melon", "mango"]

By leaving out the start value, the range will start at the first item.

list = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
print(list[:4])

nn "nn "nn

By leaving out the end value, the range will go on to the end of the list.

list = ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
print(list[2:])

"nn "nn "nn

Specify negative indexes if you want to start the search from the end of the list.

list =["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
print(list[-4:-1])

"nn "nn "nn

To determine if a specified item is present in a list use the in keyword.
list = ["apple", "banana", "cherry"]
if "apple" in list:
print("Yes, 'apple' is in the fruits list")

To add an item to the end of the list, use the append() method.
list = ["apple", "banana", "cherry"]
list.append("orange")
print(list)

The remove() method removes the specified item.
list = ["apple", "banana", "cherry"]
list.remove("banana'")
print(list)

To change the value of a specific item, refer to the index number.

list = ["apple", "banana", "cherry"]
list[1] = "blackcurrant"
print(list)

37

List Comprehension
List comprehension offers a shorter syntax when you want to create a new list based
on the values of an existing list.

newlist = [expression for item in iterable if condition == True]

The return value is a new list, leaving the old list unchanged.

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]
nan

newlist = [x for x in fruits if "a" in X]
print(newlist)

Python Lambda
A lambda function is a small anonymous function. A lambda function can take any
number of arguments, but can only have one expression.
lambda arguments : expression

The expression is executed and the result is returned.
x =lambdaa:a+ 10
print(x(5))

Lambda functions can take any number of arguments.
x =lambdaa,b:a*b
print(x(5, 6))

The power of lambda is better shown when you use them as an anonymous function
inside another function.
def myfunc(n):
return lambdaa:a *n

mydoubler = myfunc(2)
mytripler = myfunc(3)

print(mydoubler(11))
print(mytripler(11))

38

Python Arrays

Arrays are used to store multiple values in one single variable. Python does not have
built-in support for Arrays, but Python Lists can be used instead. Array in Python
can be created by importing an array module. But we are interested to learn about
NumPy.

NumPy

NumPy is a Python library which is short for "Numerical Python". NumPy is used
for working with arrays. In Python, we have lists that serve the purpose of arrays,
but they are slow to process. NumPy aims to provide an array object that is up to
50x faster than traditional Python lists.

import numpy
arr = numpy.array([1, 2, 3, 4, 5])

print(arr)

NumPy is usually imported under the np alias. In Python, alias are an alternate name
for referring to the same thing.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)
The array object in NumPy is called ndarray. To create an ndarray, we can pass a
list, tuple or any array-like object into the array() method, and it will be converted
into an ndarray.

import numpy as np
arr = np.array((1, 2, 3, 4, 5))
print(arr)

0-D Arrays
0-D arrays, or Scalars, are the elements in an array. Each value in an array is a 0-D
array.
import numpy as np
arr = np.array(42)
print(arr)

1-D Arrays
An array that has 0-D arrays as its elements is called uni-dimensional or 1-D array.
These are the most common and basic arrays.

39

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)

2-D Arrays
An array that has 1-D arrays as its elements is called a 2-D array. These are often
used to represent matrix.

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)

3-D Arrays
An array that has 2-D arrays (matrices) as its elements is called 3-D array.

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(arr)

NumPy Arrays provides the ndim attribute that returns an integer that tells us how
many dimensions the array have.

import numpy as np

a = np.array(42)

b =np.array([1, 2, 3, 4, 5])

c =np.array([[1, 2, 3], [4, 5, 6]])

d =np.array([[[1, 2, 3], [4, 5, 6], [[1, 2, 3], [4, 5, 6]]])
print(a.ndim)

print(b.ndim)

print(c.ndim)

print(d.ndim)

An array can have any number of dimensions. When the array is created, you can
define the number of dimensions by using the ndmin argument.
import numpy as np

arr = np.array([1, 2, 3, 4], ndmin=5)

print(arr)

print('number of dimensions :', arr.ndim)

In this array the innermost dimension (5th dim) has 4 elements, the 4th dim has 1
element that 1s the vector, the 3rd dim has 1 element that is the matrix with the vector,
the 2nd dim has 1 element that is 3D array and 1st dim has 1 element that is a 4D
array.

40

Access Array Elements

You can access an array element by referring to its index number. The indexes in
NumPy arrays start with 0, meaning that the first element has index 0, and the second
has index 1 etc.

import numpy as np

arr = np.array([1, 2, 3, 4])
print(arr[0])

Access 2-D Arrays

To access elements from 2-D arrays we can use comma separated integers
representing the dimension and the index of the element. Think of 2-D arrays like a
table with rows and columns, where the dimension represents the row and the index
represents the column.

import numpy as np

arr = np.array([[1,2,3.4,5], [6,7,8,9,10]])

print(arr[0, 1])

Access 3-D Arrays

To access elements from 3-D arrays we can use comma separated integers
representing the dimensions and the index of the element.

import numpy as np

arr = np.array([[[1, 2, 3], [4, S, 6]], [[7, 8, 9], [10, 11, 12]]])

print(arr[0, 1, 2])

The first number represents the first dimension, which contains two arrays:
[[1,2,3],[4,5, 6]]

and:

[[7,8,9],[10, 11, 12]]

Since we selected 0, we are left with the first array:

[[1,2,3],[4,5, 6]]

The second number represents the second dimension, which also contains two
arrays:

[1, 2, 3]

and:

[4, 5, 6]

Since we selected 1, we are left with the second array:

[4, 5, 6]

The third number represents the third dimension, which contains three values:

41

4

5

6

Since we selected 2, we end up with the third value:

6

Negative Indexing

Use negative indexing to access an array from the end.
import numpy as np

arr = np.array([[1,2,3.4,5], [6,7,8,9,10]])

print(arr[1, -1])

Slicing arrays

Slicing in python means taking elements from one given index to another given
index. We pass slice instead of index like this: [start:end]. We can also define the
step, like this: [start:end:step]. If we don't pass start its considered 0. If we don't pass
end its considered length of array in that dimension. If we don't pass step its
considered 1.

import numpy as np

arr = np.array([1, 2, 3,4, 5,6, 7])

print(arr[1:5])

print(arr[4:])

print(arr[:4])

print(arr[-3:-1])

print(arr[1:5:2])

print(arr[::2])

Slicing 2-D Arrays
import numpy as np
arr = np.array([[1, 2, 3,4, 5],[6,7, 8,9, 10]])
print(arr[1, 1:4])
print(arr[0:2, 2])
print(arr[0:2, 1:4])

Shape of an Array

The shape of an array is the number of elements in each dimension. NumPy arrays
have an attribute called shape that returns a tuple with each index having the number
of corresponding elements.

42

import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.shape)

Reshaping arrays
Reshaping means changing the shape of an array. The shape of an array is the number
of elements in each dimension. By reshaping we can add or remove dimensions or
change number of elements in each dimension.

import numpy as np

arr = np.array([1, 2, 3,4,5,6,7,8,9, 10, 11, 12])

arr2D = arr.reshape(4, 3)

print(arr2D)

arr3D = arr.reshape(2, 3, 2)

print(arr3D)

We can Reshape Into any Shape as long as the elements required for reshaping are
equal in both shapes. We can reshape an 8 elements 1D array into 4 elements in 2
rows 2D array but we cannot reshape it into a 3 elements 3 rows 2D array as that
would require 3x3 =9 elements.

import numpy as np

arr = np.array([1, 2, 3,4, 5, 6,7, 8])

newarr = arr.reshape(3, 3)

print(newarr)

You are allowed to have one "unknown" dimension. Meaning that you do not have
to specify an exact number for one of the dimensions in the reshape method. Pass
-1 as the value, and NumPy will calculate this number for you.
import numpy as np

arr = np.array([1, 2, 3,4, 5, 6, 7, 8])

newarr = arr.reshape(-1, 1, 2)

print(newarr)

Flattening the arrays
Flattening array means converting a multidimensional array into a 1D array.

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
newarr = arr.reshape(-1)
print(newarr)

43

Iterating Arrays
[terating means going through elements one by one.
import numpy as np
arr = np.array([1, 2, 3])
for x in arr:
print(x)
In a 2-D array it will go through all the rows.
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
print(x)
To return the actual values, the scalars, we have to iterate the arrays in each
dimension.
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
for y in x:
print(y)
Iterating Arrays Using nditer()
In basic for loops, iterating through each scalar of an array we need to use n for loops
which can be difficult to write for arrays with very high dimensionality.
import numpy as np
arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]1])
for x in np.nditer(arr):
print(x)
We can use filtering and followed by iteration.
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
for x in np.nditer(arr[:, ::2]):
print(x)
Enumerated Iteration Using ndenumerate()
Enumeration means mentioning sequence number of somethings one by one.
Sometimes we require corresponding index of the element while iterating, the
ndenumerate() method can be used for those use cases.
import numpy as np
arr = np.array([1, 2, 3])
for 1dx, x in np.ndenumerate(arr):
print(idx, x)

44

For 2-D,

import numpy as np

arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

for idx, x in np.ndenumerate(arr):
print(idx, x)

Searching Arrays
You can search an array for a certain value, and return the indexes that get a match.
To search an array, use the where() method.

import numpy as np

arr = np.array([1, 2, 3,4, 5, 4, 4])

X = np.where(arr == 4)

print(x)
Find the indexes where the values are even.

import numpy as np

arr = np.array([1, 2, 3,4, 5, 6, 7, 8])

x = np.where(arr%?2 == 0)

print(x)
There is a method called searchsorted() which performs a binary search in the array,
and returns the index where the specified value would be inserted to maintain the
search order. The searchsorted() method is assumed to be used on sorted arrays. Find
the indexes where the value 7 should be inserted.

import numpy as np

arr = np.array([6, 7, 8, 9])

x = np.searchsorted(arr, 7)

print(x)
The method starts the search from the left and returns the first index where the
number 7 is no longer larger than the next value.

import numpy as np

arr = np.array([6, 7, 8, 9])

x = np.searchsorted(arr, 7, side="right")

print(x)
To search for more than one value, use an array with the specified values.

import numpy as np

arr = np.array([1, 3, 5, 7])

x = np.searchsorted(arr, [2, 4, 8])

print(x)
Sorting Arrays
Sorting means putting elements in an ordered sequence.

45

import numpy as np
arr = np.array([3, 2, 0, 1])
print(np.sort(arr))

use the sort() method on a 2-D array, both arrays will be sorted.

This method returns a copy of the array, leaving the original array unchanged. If you

import numpy as np
arr = np.array([[3, 2, 4], [5, 0, 1]])
print(np.sort(arr))

¢ Write a python code to find second largest number in a NumPy array.

import numpy as np
def find second largest(arr):
largest = second _largest = arr[0]
for num in arr[1:]:
if num > largest:
second largest = largest
largest = num
elif num > second_largest and num != largest:
second largest = num
return second largest

arr =np.array([10, 5, 8, 15, 2])
second largest = find second largest(arr)
print("The second largest element is:", second largest)

¢ Write a python code to add two 2D matrices using NumPy array.

import numpy as np

matrix1 =np.array([[1, 2, 3], [4, 5, 6]])
matrix2 = np.array([[7, 8, 9], [10, 11, 12]])
sum_matrix = matrix1 + matrix2
print("Sum of the matrices:\n", sum matrix)

¢ Write a python code to multiply two 2D matrices using NumPy array.

import numpy as np

matrix1 = np.array([[1, 2], [3, 4]])

matrix2 = np.array([[5, 6], [7, 8]])

result matrix = np.dot(matrix1, matrix2)
print("Product of the matrices:\n", result matrix)

46

Python Strings
Strings in python are surrounded by either single quotation marks, or double
quotation marks.
print("Hello")
print('Hello")
print("It's alright")
print("AUST 'CSE' ")
print('AUST "IPE" ")
Assigning a string to a variable 1s done with the variable name followed by an equal

sign and the string.

a = "Hello"

print(a)
You can assign a multiline string to a variable by using three quotes.
a ="""Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua."""
print(a)
Like many other popular programming languages, strings in Python are arrays of
bytes representing unicode characters. However, Python does not have a character
data type, a single character is simply a string with a length of 1. Square brackets
can be used to access elements of the string.

a = "Hello, World!"

print(a[1])
Since strings are arrays, we can loop through the characters in a string, with a for
loop.

for x in "banana":

print(x)

To get the length of a string, use the len() function.
a = "Hello, World!"
print(len(a))

To check if a certain phrase or character is present in a string, we can use the keyword
in.

txt = "The best things in life are free!"

print("free" in txt)

47

To check if a certain phrase or character is NOT present in a string, we can use the
keyword neot in.

txt = "The best things in life are free!"
print("expensive" not in txt)

Slicing Strings
You can return a range of characters by using the slice syntax. Specify the start index
and the end index, separated by a colon, to return a part of the string.
b = "Hello, World!"

print(b[2:5])

By leaving out the start index, the range will start at the first character.
b = "Hello, World!"

print(b[:5])

By leaving out the end index, the range will go to the end.

b = "Hello, World!"

print(b[2:])

Use negative indexes to start the slice from the end of the string.

b = "Hello, World!"

print(b[-5:-2])

Modify Strings

The upper() method returns the string in upper case.

a = "Hello, World!"

print(a.upper())

The lower() method returns the string in lower case.

a = "Hello, World!"
print(a.lower())

The swapcase() method returns a string where all the upper case letters become lower
case and vice versa.

txt = "Hello My Name Is PETER"

X = txt.swapcase()

print(x)
The zfill() method adds zeros (0) at the beginning of the string, until it reaches the
specified length. If the value of the len parameter is less than the length of the string,
no filling is done.
a = "hello"

b = "welcome to the jungle"
c ="10.000"

48

print(a.zfill(10))
print(b.zfill(10))
print(c.zfill(10))

The strip() method removes any whitespace from the beginning or the end.
a =" Hello, World! "

print(a.strip())
The replace() method replaces a string with another string.
a = "Hello, World!"
print(a.replace("H", "J"))
The split() method returns a list where the text between the specified separator
becomes the list items.
a = "Hello, World!"
print(a.split(","))

To concatenate, or combine, two strings you can use the + operator.
a = "Hello"

b = "World"

c=a+tb

print(c)

To add a space between them, add a
a = "Hello"

b = "World"

c=at+""+b

print(c)

nn

We can combine strings and numbers by using f-strings.
age =21

txt = "My name is John, I am {age}"

print(txt)

A placeholder can include a modifier to format the value.
price = 59

txt = f"The price is {price:.2f} dollars"

print(txt)

A placeholder can contain Python code, like math operations.
txt = f"The price is {20 * 59} dollars"

print(txt)

49

The capitalize() method returns a string where the first character is upper case, and
the rest is lower case.

txt = "python is FUN!"

X = txt.capitalize()

print (X)
The count() method returns the number of times a specified value appears in the
string.

txt = "I love apples, apple are my favorite fruit"

x = txt.count("apple")

print(x)
Search in a specified range,

txt = "I love apples, apple are my favorite fruit"

x = txt.count("apple", 10, 24)

print(x)
The startswith() method returns True if the string starts with the specified value,
otherwise False.

txt = "Hello, welcome to my world."

x = txt.startswith("Hello")

print(x)

The endswith() method returns True if the string ends with the specified value,
otherwise False.

txt = "Hello, welcome to my world."

x = txt.endswith(".")

print(x)
The find() method finds the first occurrence of the specified value. It returns -1 if the
value is not found.

txt = "Hello, welcome to my world."

x = txt.find("e")

print(x)
The rfind() method finds the last occurrence of the specified value. It returns -1 if
the value is not found.

txt = "Hello, welcome to my world."

x = txt.rfind("e")

print(x)
The islower() method returns True if all the characters are in lower case, otherwise
False. Numbers, symbols and spaces are not checked, only alphabet characters.
a ="Hello world!"
b ="hello 123"

50

¢ = "mynameisPeter"

print(a.islower())

print(b.islower())

print(c.islower())
The isupper() method returns True if all the characters are in upper case, otherwise
False. Numbers, symbols and spaces are not checked, only alphabet characters.

a = "Hello World!"
b = "hello 123"
c ="MY NAME IS PETER"
print(a.isupper())
print(b.isupper())
print(c.isupper())
The join() method takes all items in an iterable and joins them into one string. A
string must be specified as the separator.
myTuple = ("John", "Peter", "Vicky")
x =", ".join(myTuple)
print(x)
The lIstrip() method removes any leading characters (space is the default leading
character to remove).
txt=",,,,,ssaaww.....banana"
x = txt.Istrip("b.,saw")
print(x)

The rstrip() method removes any trailing characters (characters at the end of a
string), space is the default trailing character to remove.
txt = "banana,,,,,ssqqqww....."
x = txt.rstrip("an,.qsw")
print(x)
Escape Character
To insert characters that are illegal in a string, use an escape character. An escape
character is a backslash \ followed by the character you want to insert. An example
of an illegal character is a double quote inside a string that is surrounded by double
quotes.
txt = "We are the so-called "Vikings" from the north." #Wrong
txt = "We are the so-called \"Vikings\" from the north." #Correct
Other escape characters used in Python:
txt = 'It\'s alright.'
print(txt)
txt = "This will insert one \\ (backslash)."

51

print(txt)

txt = "Hello\nWorld!"
print(txt)

txt = "Hello\tWorld!"
print(txt)

txt = "Hello \bWorld!"
print(txt)

52

Searching Algorithms
Searching is an operation or a technique that helps finds the place of a given element
or value in the list. Any search is said to be successful or unsuccessful depending
upon whether the element that is being searched is found or not. Some of the standard
searching technique that is being followed in data structure is listed below:

1. Linear Search

2. Binary Search
Linear Search
Linear search is a very basic and simple search algorithm. In Linear search, we
search an element or value in a given array by traversing the array from the starting,
till the desired element or value is found. It compares the element to be searched
with all the elements present in the array and when the element is matched
successfully, it returns the index of the element in the array, else it return -1. Linear
Search is applied on unsorted or unordered lists, when there are fewer elements in a
list.
For Example,

110]14]19[26 |27 [31 |33 [35]40]47]|

Find 33.

Pseudocode
function linear search(data, target):
for 1 in range(len(data)):
if data[i1] == target:
return 1
return -1

Try to implement Linear Search!

def linear search(data, target):
for 1 in range(len(data)):
if data[i] == target:
return 1
return -1

my list=[10, 14, 19, 26, 27, 31, 33, 35, 40, 47]
target element = 33

53

result = linear search(my _list, target element)
if result !=-1:

print("Element found at index:", result)
else:

print("Element not found")

Binary Search

Binary Search is used with sorted array or list. Binary Search is useful when there
are large number of elements in an array and they are sorted. So, a necessary
condition for Binary search to work is that the list/array should be sorted.

For Example,

110]14]19[26 |27 [31 33 [35]40]47]|

Find 33.
Pseudocode
function binary search(data, target):
low =0

high = len(data) - 1
while low <= high:
mid = (low + high) // 2
if data|mid] == target:
return mid
elif data[mid] < target:
low = mid + 1
else:
high =mid - 1
return -1

Try to implement Binary Search!

54

def binary search(data, target):
low =0
high = len(data) - 1
while low <= high:
mid = (low + high) // 2
if data[mid] == target:
return mid
elif data[mid] < target:
low =mid + 1
else:
high =mid - 1
return -1

my data=[10, 14, 19, 26, 27, 31, 33, 35, 40, 47]
target _element = 33
result = binary search(my_data, target element)
if result !=-1:

print("Element found at index:", result)
else:

print("Element not found")

Linear Search vs Binary Search

Feature Linear Search

Binary Search

Data Structure | Works on any list

Requires sorted list

Search Time O(n) - Iterates through all
elements in worst case

O(log n) - Divides search space
in half each iteration

Implementation
Complexity

Simpler to implement

More complex due to loop and
index adjustments

Use Case Suitable for small datasets or

unsorted data

Ideal for large sorted datasets
where efficiency matters

Insertion Sort Algorithm

Require: List A, Size of list n

forj=1ton-1
key = A[j]
i=j-1
while 1 >= 0 and A[i] > key
Ali+1]=A[i]
i=i-1
end while
A1+ 1] =key
end for

Selection Sort Algorithm

Require: List A, Size of list n

fori=0ton-2do
min = 1
forj=1+1ton-1do
if A[j] < A[min] then
min = j
end if
end for
swap A[i] and A[min]
end for

56

FINAL EXAMINATION

There will be a one-hour written examination. Different types of questions will be included such
as MCQ, writing a program, finding outputs, correcting errors etc.

